Gastro-esophageal reflux disease (GERD) Consensus and Controversies

Yvan.vandenplas@uzbrussel.be
• Introduction
• Symptoms and age
• Diagnostic investigations
• Management
 • The infant and young child
 • The older child
• Special groups
• Conclusion
NASPGHAN-ESPGHAN Guidelines for Evaluation and Treatment of Gastro-Esophageal Reflux in Infants and Children

J Pediatr Gastroenteroerol Nutr 2009;49:498-547

J Pediatr Gastroenterol Nutr 2017

Gastroesophageal reflux: management guidance for the pediatrician.

Lightdale JR, Gremse DA; Section on Gastroenterology, Hepatology, and Nutrition.

Pediatrics. 2013;131:e1684-95

This clinical report endorses the rigorously developed, well-referenced North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines and likewise emphasizes important concepts for the general pediatrician.

The overall results of our survey show that the majority of pediatricians are unaware of 2009 NASPGHAN-ESPGHAN guidelines and often prescribe PPIs despite a lack of efficacy for the symptoms being treated.

The over diagnosis of GERD places undue burden on both families and national health systems which has not been impacted by the publication of international guidelines.
Influence of "GERD" label on parents' decision to medicate infants.
Scherer LD. Pediatrics 2013;131:839-45

Parents who received a GERD diagnosis were interested in medicating their infant, even when they were told that the medications are likely ineffective. However, parents not given a disease label were interested in medication only when medication effectiveness was not discussed (and hence likely assumed)

Labeling an otherwise healthy infant as having a 'disease' increased parents' interest in medicating their infant. Also when they were told that medications are ineffective.

These findings suggest that use of disease labels may promote overtreatment by causing people to believe that ineffective medications are both useful and necessary.
• Introduction
• Symptoms and age
• Diagnostic investigations
• Management
 • The infant and young child
 • The older child
• Special groups
• Conclusion
Pediatric GERD and acid-related conditions (ARC): trends in incidence of diagnosis and acid suppression therapy

- **Between 2000 and 2005, annual incidence of GERD/ARC diagnosis among infants (age ≤1 year) more than tripled (from 3.4 to 12.3%) and increased by 30% to 50% in other age groups.**
- Patients diagnosed by GI specialists (9.2%) were more likely to be treated with PPIs compared to patients diagnosed by primary care physician (PCP).
 - PPI-initiated patients doubled
 - 1999 31.5%
 - 2005 62.6%
 - when compared with H²RA-initiated patients
 - associated with 30% less discontinuation
 - 90% less therapy switching in 1st month
 - higher comorbidity burden
 - pre-treatment total HCU costs when diagnosed
Prevalence and management of GERD in children and adolescents: a nationwide cross-sectional observational study.(3)

Prevalence of GER in France according to age

<table>
<thead>
<tr>
<th>Extrapolation to French population</th>
<th>0-23 month</th>
<th>2-11 year</th>
<th>12-17 year</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>24.4%</td>
<td>7.2%</td>
<td>10.7%</td>
<td>10.3%</td>
</tr>
</tbody>
</table>

GER symptoms

<table>
<thead>
<tr>
<th>Mean duration (month)</th>
<th>0-23 month</th>
<th>2-11 year</th>
<th>12-17 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regurgitation</td>
<td>85% BC</td>
<td>36%</td>
<td>33%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>26% C</td>
<td>32% C</td>
<td>13%</td>
</tr>
<tr>
<td>Crying</td>
<td>45% BC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heartburn</td>
<td>-</td>
<td>37% A</td>
<td>86% AB</td>
</tr>
<tr>
<td>Atypical symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding difficulties, anorexia</td>
<td>42% BC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Failure to thrive</td>
<td>6% BC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Postural defects</td>
<td>8% BC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stridor</td>
<td>10% BC</td>
<td>4% C</td>
<td><1%</td>
</tr>
<tr>
<td>Chronic cough</td>
<td>6% BC</td>
<td>68% AC</td>
<td>33% A</td>
</tr>
<tr>
<td>Laryngitis, otitis</td>
<td>-</td>
<td>35% AC</td>
<td>12% A</td>
</tr>
<tr>
<td>Asthma</td>
<td>-</td>
<td>24% AC</td>
<td>15% A</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>-</td>
<td>2% AC</td>
<td>6% A</td>
</tr>
</tbody>
</table>
‘Typical Reflux Syndrome’ cannot be diagnosed in infants and children who lack the cognitive ability to reliably report symptoms.

Children < 8 (… up to 11) years old cannot report symptoms in a reliable / reproducible way.
Introduction
Symptoms and age
• Diagnostic investigations
• Management
 • The infant and young child
 • The older child
• Special groups
• Conclusion
Esophago-Gastro-Duodenoscopy:

The working group suggests *not* to use EGD for diagnosing GERD in infants and children.

VOTING: 7, 8, 8, 8, 9, 9, 9, 9, 9, 9

Based on expert opinion, the working group suggests to use EGD with biopsies to assess complications of GERD, in case an underlying mucosal disease is suspected and prior to escalation of therapy.

VOTING: 6, 8, 8, 9, 9, 9, 9, 9, 9, 9
Comparison of UGI contrast studies and pH/impedance tests for the diagnosis of childhood GER.

retrospective, compared UGI studies pH/impedance tests.

GER UGIS: 116 / 579 children (20%) 66 also underwent a pH/impedance test

Using pH/impedance tests as the reference for GER, UGIS sensitivity of 42.8% negative predictive value of 24%

No significant correlation (P > 0.05) between the reflux index and the number of reflux episodes in the pH/impedance tests and height of reflux in the UGI study
pH < 4: corresponds best with “pyrosis”

pH monitoring:
developed to diagnose GER(D) in adults with “heartburn” without cardiac reason for the heartburn ⇒ to diagnose “Non-Erosive Reflux Disease”

.... The technique has been used in many indications for which it was not developed
Continuous 24-hour esophageal pH monitoring in 285 asymptomatic infants 0-15 months old.
Vandenplas Y. J Pediatr Gastroenterol Nutr. 1987;6:220-4

Gastroesophageal reflux, as measured by 24-hour pH monitoring, in 509 healthy infants screened for risk of SIDS

During in-vivo experiments, significant differences were found in acid exposure times derived from

antimony 4.0 +/- 0.8%
ISFET 5.7 +/- 1.1%
glass pH electrodes 9.0 +/- 1.7%

IMPEDANCE: more datamore useful?

MII vs pH-study:
It is more than gra\text{pH}ic difference!

- All kind of reflux - acid, non-acid
 - liquid, gas, mixed
- Number and % of time of reflux episodes
- (Height of) proximal migration of reflux
- time of bolus exposure
- reflux and bolus clearance time
- Symptom-reflux correlation
Low mean impedance in 24-hour tracings and esophagitis in children: a strong connection.
Salvatore S. Dis Esophagus. 2016;29:10-4

Data adjusted for age through z-score transformation using percentiles normalized by the LMS (Lambda for the skew, Mu for the median, and Sigma for the generalized coefficient of variation) method.

298 impedance tracings were analyzed.

Esophagitis
- endoscopic 30%
- histological 29%

- Median baseline z-score was significantly decreased both in proximal (P = 0.02) and distal (P = 0.01) esophagus in patients with endoscopic (but not histological) esophagitis.
- Patients with more severe esophagitis showed the lowest z-score.
- Bolus exposure index and the number of reflux episodes were the variables that were significantly associated with the baseline z-score.
Esophageal impedance baseline is age-dependent

Baseline = age dependent
The relationship between GER and cough in children with chronic unexplained cough using combined impedance-pH-manometry recordings.

Both acid and WA GER may precede cough in children with unexplained cough, but cough does not induce GER.
Objective cough recording improves symptom association analysis
Reflux episodes in relation with the 3 age groups and the 3 predominant symptoms.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CRYING</th>
<th></th>
<th></th>
<th>COUGH</th>
<th></th>
<th></th>
<th>VOMITING</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-6mo</td>
<td>6-12mo</td>
<td>>12mo</td>
<td>1-6mo</td>
<td>6-12mo</td>
<td>>12mo</td>
<td>1-6mo</td>
<td>6-12mo</td>
<td>>12mo</td>
</tr>
<tr>
<td>No. patients</td>
<td>37</td>
<td>30</td>
<td>21</td>
<td>31</td>
<td>34</td>
<td>37</td>
<td>22</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>No. events Median</td>
<td>456</td>
<td>279</td>
<td>137</td>
<td>338</td>
<td>311</td>
<td>326</td>
<td>115</td>
<td>53</td>
<td>61</td>
</tr>
<tr>
<td>GER related (%)</td>
<td>44</td>
<td>44</td>
<td>50</td>
<td>56</td>
<td>58</td>
<td>43</td>
<td>90</td>
<td>87</td>
<td>75</td>
</tr>
<tr>
<td>AR associated (%)</td>
<td>36</td>
<td>57</td>
<td>43</td>
<td>29</td>
<td>60</td>
<td>57</td>
<td>20</td>
<td>52</td>
<td>76</td>
</tr>
<tr>
<td>WAR associated (%)</td>
<td>62</td>
<td>42</td>
<td>54</td>
<td>69</td>
<td>39</td>
<td>34</td>
<td>69</td>
<td>46</td>
<td>22</td>
</tr>
<tr>
<td>AlkR associated (%)</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

AR & WAR = age dependent
Clinical studies show that GERD is highly prevalent in children with asthma, with estimates as high as 80%, but nearly half of the children are asymptomatic. However, there is no conclusive evidence per se that asymptomatic GERD informs asthma control, and treatment of GERD in the few controlled trials available for review does not substantively improve asthma outcomes. In a recent large controlled clinical trial, treatment with a PPI was not only ineffective, but adverse effects were common, including an increased prevalence of symptomatic respiratory infections.

Current evidence does not support the routine use of anti-GERD medication in the treatment of poorly controlled asthma of childhood.
Diagnosis

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Questionnaires</td>
<td>1st to do, but…. limitations</td>
</tr>
<tr>
<td>2. Radiology</td>
<td>anatomy</td>
</tr>
<tr>
<td>3. Scintigrapy</td>
<td>respiratory symptoms ?</td>
</tr>
<tr>
<td>4. Ultrasound</td>
<td>??</td>
</tr>
<tr>
<td>5. Endoscopy (+ biopsy)</td>
<td>Esophagitis</td>
</tr>
<tr>
<td>6. Manometry</td>
<td>Pressure, motility</td>
</tr>
<tr>
<td>7. pH metry</td>
<td>⇒ acid GER</td>
</tr>
<tr>
<td>8. Impedance-metry</td>
<td>⇒ acid & non-acid GER</td>
</tr>
<tr>
<td>9. Therapeutic trial</td>
<td>no data in children</td>
</tr>
</tbody>
</table>
• Symptoms and age
• Diagnostic investigations

• Management
 • The infant and young child
 • The older child
• Special groups
• Conclusion
Changes in prescription patterns of acid-suppressant medications by Belgian pediatricians: analysis of the national database [1997-2009].

- increased 7-fold from 20,782 daily defined doses (DDDs) in January 1997 to 142,912 DDDs in June 2009.

- During this study period, reimbursed volume of H2-RAs increased from 2575 to 38,996 DDDs and of PPIs from 3472 to 103,926 DDDs per month.
Esomeprazole for the treatment of GERD in infants ages 1-11 months.

<table>
<thead>
<tr>
<th>Category</th>
<th>HR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crying >1 h and vomiting volume</td>
<td>0.31</td>
<td>(0.09–1.03)</td>
<td>0.56</td>
</tr>
<tr>
<td>Medium to large</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crying <1 h</td>
<td>1.27</td>
<td>(0.39–4.18)</td>
<td>0.69</td>
</tr>
<tr>
<td>Crying ≥1 h</td>
<td>0.48</td>
<td>(0.19–1.22)</td>
<td>0.12</td>
</tr>
<tr>
<td>Vomiting volume none to small</td>
<td>0.90</td>
<td>(0.34–2.42)</td>
<td>0.84</td>
</tr>
<tr>
<td>Vomiting volume medium to large</td>
<td>0.54</td>
<td>(0.19–1.58)</td>
<td>0.26</td>
</tr>
<tr>
<td>No. of vomiting episodes <5</td>
<td>0.90</td>
<td>(0.32–2.56)</td>
<td>0.84</td>
</tr>
<tr>
<td>No. of vomiting episodes ≥5</td>
<td>0.62</td>
<td>(0.23–1.72)</td>
<td>0.36</td>
</tr>
<tr>
<td>Uninvestigated GERD</td>
<td>0.24</td>
<td>(0.08–0.75)</td>
<td>0.01</td>
</tr>
<tr>
<td>Investigated GERD</td>
<td>1.39</td>
<td>(0.56–3.46)</td>
<td>0.48</td>
</tr>
<tr>
<td>Not pretreated for GERD</td>
<td>0.60</td>
<td>(0.23–1.54)</td>
<td>0.29</td>
</tr>
<tr>
<td>Pretreated for GERD</td>
<td>0.79</td>
<td>(0.30–2.05)</td>
<td>0.63</td>
</tr>
<tr>
<td>Age ≥6 months</td>
<td>0.68</td>
<td>(0.19–2.40)</td>
<td>0.55</td>
</tr>
<tr>
<td>Age <6 months</td>
<td>0.68</td>
<td>(0.31–1.50)</td>
<td>0.34</td>
</tr>
<tr>
<td>Primary analysis</td>
<td>0.69</td>
<td>(0.35–1.35)</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Clinical predictors of pathological GER in infants with persistent distress

Fig. 1 Linear regression analysis of fractional reflux time in relation to duration of crying per 24 h.
PPI: side effects

- bacterial overgrowth (dysbiosis, ↓ diversity)
- community-acquired pneumonia (children, adults)
- gastroenteritis (children)
- clostridium difficile infection
- Vit B12 deficiency
- candidemia (preterms)
- necrotizing enterocolitis (preterms)
- GI bleeding
- parietal cell hyperplasia / benign gastric polyps
- case reports: acute interstitial nephritis, acute hepatitis
- osteopenia, hip fractures
- ? Allergy
- ? Magnesium
- ? Coeliac disease
No effect of proton pump inhibitors on crying and irritability in infants: systematic review of randomized controlled trials.

Ranitidine is associated with infections, necrotizing enterocolitis, and fatal outcome in newborns.

- infections OR 5.5, 95% CI 2.9-10.4, P < .001
- NEC OR 6.6, 95% CI 1.7-25.0, P = .003
- Mortality rate: 9.9% vs 1.6%, P = .003
Prenatal exposure to acid-suppressive drugs and the risk of allergic diseases in the offspring: a cohort study.

Mulder B. Clin Exp Allergy. 2014;44:261-9

Prenatal exposure to PPIs and/or H2As
• Atopic dermatitis 1.32 (95% CI 1.06-1.64)
• Astma 1.57 (95% CI 1.20-2.05)
• Allergic rhinitis 2.40 (95% CI 1.42-4.04)

The adjusted Hazard Ratios (aHR) for the development of two or more (aHR 2.13 95% CI: 1.43-3.19) and three allergic diseases (aHR 5.18 95% CI: 2.16-12.42) were even more elevated after prenatal exposure to PPIs or H2As.
Development of food allergies in patients with GERD treated with gastric acid suppressive medications.
Trikha A. Pediatr Allergy Immunol. 2013;24:582-8

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Hazard ratio</th>
<th>95% CI</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dx of reflux with GAS medication</td>
<td>1.69</td>
<td>1.16-2.48</td>
<td>0.007</td>
</tr>
<tr>
<td>Dx of reflux with no GAS medication</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Children with GERD who were treated with GAS were more likely to be diagnosed with a food allergy (Hazard ratio (HR): 3.67, 95% CI 2.15-6.27), as were children with GERD diagnosis but who were not treated with GAS medications (HR: 2.15, 95% CI: 1.21-3.81).

A direct comparison of the two GERD cohorts showed that children with GERD who were treated with GAS had a greater risk of food allergy than those with GERD who were untreated (HR, 1.68, 95%CI, 1.15-2.46).
Prenatal exposure to acid-suppressive drugs and the risk of allergic diseases in the offspring: a cohort study.

Prenatal exposure to PPIs and/or H2As
- Atopic dermatitis 1.32 (95% CI 1.06-1.64)
- Asthma 1.57 (95% CI 1.20-2.05)
- Allergic rhinitis 2.40 (95% CI 1.42-4.04)

The adjusted Hazard Ratios (aHR) for the development of two or more (aHR 2.13 95% CI: 1.43-3.19) and three allergic diseases (aHR 5.18 95% CI: 2.16-12.42) were even more elevated after prenatal exposure to PPIs or H2As.
Effect of proton pump inhibition on acid, weakly acid and weakly alkaline GER in children.
8 studies with a total of 276 children (0-15 years of age) Compared with placebo, H2RAs were more effective in the reduction of symptoms in terms of histologic healing increasing gastric pH arger overall treatment effect.

In infants, H2RAs were only more effective in terms of histologic healing. Comparing H2RAs with antacids, H2RAs were more effective in symptom reduction in only 1 study. H2RAs compared with proton pump inhibitors were not significantly different in any of the outcome measures.

Evidence to support the efficacy and safety of H2RAs in infants and children is limited and of poor quality.
Functional gastro-intestinal disorder algorithms focus on early recognition, parental reassurance and nutritional strategies.

<table>
<thead>
<tr>
<th>Stat</th>
<th>Statement</th>
<th>Consensus</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Diagnostic investigations are not indicated for the diagnosis and management of “troublesome regurgitation”.</td>
<td>Yes (20/22)</td>
<td>7.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agree: 91%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Anti-Regurgitation formula may be considered in infants with physiologic regurgitation.</td>
<td>Yes (20/22)</td>
<td>7.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agree: 91%</td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>Drug treatment is not indicated in the management of physiologic regurgitation.</td>
<td>Yes (22/22)</td>
<td>8.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agree 100%</td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>Drug treatment is not indicated in the management of physiologic and troublesome regurgitation.</td>
<td>Yes (17/22)</td>
<td>7.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agree 77%</td>
<td></td>
</tr>
</tbody>
</table>
Breastfeeding

- Yes
- No

Continue BF (reassurance, frequency, volume, technique)
Cow milk free diet if CMPA is suspected

Age of onset > 1 week or < 6 months

- No
- Yes

Is there also:
- Vomiting?
- Irritability/crying?
- Fussiness?
- Feeding problems?
- Atopic dermatitis? Eczema?
- Constipation? Diarrhea?
- Sleeping problems?
- CoMiSS > 12 *

Feeding frequency/volume/technique check and correct if needed

- No
- Yes

Is there also:
- Failure to thrive?
- Hematemesis?
- Back arching/Sandifer?
- Neurological abnormalities?
- Neurodevelopmental delay?

- No
- Yes

Follow-up

- Refer patient to speciality consultation
- Consider GERD, eosinophilic esophagitis, anatomical anomalies

AR-formula: anti-regurgitation formula; BF: breastfed; FF: formula fed; eHF: extensively hydrolysed formula
• Symptoms and age
• Management
 • The infant and young child
 • The older child
• Special groups
• Conclusion
The older the child, the more the therapeutic approach is equal to the approach in adults
• Once-daily morning dose, fasting, followed by a meal (activation proton pumps in the pre- and postprandial periods)
• No liquid formulations available
• Capsules, granules and tablets should not be crushed, chewed or dissolved
• Intact capsules with enteric-coated granules and enteric-coated tablets
• Granules suspended in acidic medium: applesauce, fruit juice, yoghurt
• Powder dissolved in 8.4 % sodium bicarbonate solution (SOS)

Pharmacokinetics of two formulations of omeprazole administered through a gastrostomy tube in patients with severe neurodevelopmental problems

Omeprazole is often administered through a gastrostomy tube as either (i) a Multiple Unit Pellet System (MUPS®) tablet disintegrated in water (MUPS® formulation), or (ii) a suspension in 8.4% sodium bicarbonate (suspension formulation). This bioavailability study evaluates this practice in tube-fed patients with severe neurodevelopmental problems.

METHODS
Nonblinded, two-phase cross-over trial.

RESULTS
In seven of 10 patients, bioavailability was higher for the suspension formulation than for the MUPS® formulation. Median (90% confidence interval) area under the plasma concentration–time curve ratio (MUPS® over suspension) was 0.5 (0.06–2.37).

CONCLUSIONS
In this population, omeprazole MUPS® formulation has no apparent advantage over the more easily administered suspension formulation.
• Symptoms and age
• Management
 • The infant and young child
 • The older child
• Special groups
• Conclusion
Children who are at higher risk for developing severe chronic GERD
Infants and children with:

- History of neurological impairment (fluctuation of symptoms)
- Oesophageal and anatomical disorders (trachea-oesophageal fistulas, hiatus hernias, …)
- Chronic respiratory disorders including lung transplantation
- History of prematurity
- Obesity
- Certain genetic disorders (Down's syndrome, Cornelia de Lange syndrome..)
- Symptoms and age
- Management
 - The infant and young child
 - The older child
- Special groups
- Conclusion
Lifestyle changes are emphasized as first-line therapy in both GER and GERD, whereas medications are explicitly indicated only for patients with GERD.

Infant ≠ young child ≠ older child ≠ adult
At present,

no single diagnostic test can prove or exclude extraesophageal presentations of GERD in pediatrics.
In many cases the clinician must make management decisions based on inconclusive diagnostic studies with no certainty regarding outcome.
Infant with suspicion of GERD

History and physical exam

Presence of alarm features

Yes

• Tailor testing for differential diagnosis of GERD
• Refer to specialty consultation

No

Abnormality identified?

Yes

Treat accordingly

No

GER

Symptoms and signs of GERD?

Yes

Not better

Better

Not better

Better
Figure 2

Child with suspicion of GERD (typical symptoms)

- History and physical exam

Presence of alarm features

- Yes
 - Tailor testing for differential diagnosis of GERD
 - Refer to specialty consultation

- No
 - Parent/Child education
 - Lifestyle modification

Diagnostic acid suppression up to 8 weeks

- Not better
 - Refer to Pediatric GI if available

- Better
 - Continue and evaluate on regular basis

Abnormality identified?

Treat accordingly

- pH-MII
 - Normal acid exposure
 - NERD
 - Abnormal acid exposure
 - Symptom association +
 - Hypersensitive
 - Symptom association -
 - Functional

- Endoscopy
 - Normal acid exposure
 - Abnormal